skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mosiany, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Tree carbon allocation is a dynamic process that depends on the tree’s environment, but we know relatively little about how biotic interactions influence these dynamics. In central Kenya, the loss of vertebrate herbivores and the savanna’s invasion by the ant Pheidole megacephala are disrupting mutualisms between the foundational tree Acacia (Vachellia) drepanolobium and its native ant defenders. Here, we piloted a 13Carbon (C) pulse-labeling method to investigate the influence of these biotic interactions on C allocation to ant partners by adult trees in situ. Trees withstood experimental conditions and took up sufficient labeled 13CO2 for 13C to be detected in various C sinks, including ant mutualists. The δ13C in ants collected shortly after labeling suggested that trees exposed to herbivores allocated relatively more newly assimilated C to native ant defenders. Our results demonstrate the viability of the pulse-labeling method and suggest that C allocation to ant partners depends on the biotic context of the tree, but further investigation with replication is needed to characterize such differences in relation to invasion and herbivore loss. 
    more » « less
  2. Some invasive ants have worldwide distributions and impose substantial impacts on human society and native biodiversity. Yet we know little about how ants impact soil ecosystems in general, much less how soil ecosystems shift when invasive ants move in. We excavated the coarse roots of a monodominant savanna tree in invaded and uninvaded areas to test the hypothesis that the presence of invasive ants would be associated with changes in root distribution and biomass across the landscape. We found that in the presence of invasive ants, trees had a shifted distribution of lateral coarse roots, with proportionally less root biomass near the surface and far from tree stems. In addition, the density of lateral coarse-root biomass was ~ 20% lower for trees within invaded landscapes. Our results suggest that soil-nesting invasive ants can drive important changes in rooting strategy for a tree species that serves a foundational role in the biogeochemical cycles of vertisol savannas. 
    more » « less